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1. Introduction

The influence of reinsurance strategies on the solvency of the insurer is an important subject and

has been widely analyzed in actuarial literature (see e.g. Castañer et al. (2010, 2012), Dickson

& Waters (1996) and Centeno (1986, 2002, 2005)). Several optimization problems have been

considered using different kinds of reinsurance strategies, being the proportional, the excess of

loss and the stop-loss the most well-known (see Centeno & Simões (2009) and the references

therein).

One of the main measures used to control solvency is ruin probability, but in this paper we

use also other measures related to the deficit at ruin if ruin occurs, as its expectation or the Value

at Risk (V aR) or the Tail Value at Risk (TV aR). We study the random variable deficit at ruin if

ruin occurs in the classical risk theory model considering a proportional reinsurance arrangement,

where the retention level is not constant and depends on the level of the surplus. This type

of reinsurance, called threshold proportional reinsurance, has been first defined and studied

in Castañer et al. (2010, 2012), and includes, as a particular case, the classical proportional

reinsurance with constant retention level.

In the classical risk theory model, the surplus, R(t), at a given time t ∈ [0,∞) is defined as

R (t) = u+ ct− S (t), with u = R (0) ≥ 0 being the insurer’s initial surplus, S (t) the aggregate

claims and c the instantaneous premium rate. S (t) is modeled as a compound Poisson process

S (t) =

N(t)
∑

i=1

Xi.

The claim number process {N (t)}∞t=0 is assumed to be Poisson with parameter λ. Specifically,

the corresponding claim inter-arrival times, denoted by {Ti}∞i=1 are independent and identically

distributed (i.i.d.) exponentially distributed random variables with parameter λ , where T1

denotes the time until the first claim and Ti, for i > 1, denotes the time between the (i− 1)th

and ith claims. The random variables {Xi}∞i=1 are the positive claim severities, which are i.i.d.

random variables with common probability density function f (x) and {N (t)}∞t=0 is independent

of {Xi, i ≥ 1}. We assume that the insurer’s premium income is received continuously at rate c

per unit time, where c = λE [X] (1 + ρ), and ρ > 0 is the premium loading factor.

The time of ruin is T = min {t ≥ 0 | R (t) < 0}, with T = ∞ if R (t) ≥ 0 for all t ≥ 0. The

deficit at ruin if ruin occurs is Y = |R+ (T )| and the surplus immediately prior to ruin is R− (T ).

The probability of ultimate ruin from initial surplus u is denoted ψ (u) and defined by

ψ (u) = P [T <∞ | R (0) = u] = E {I (T <∞) | R (0) = u} ,
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where I (A) = 1 if A occurs and I (A) = 0 otherwise.

Gerber & Shiu (1998) introduced the Gerber-Shiu discounted penalty function φ(u),

φ(u) = E
[

e−δTw
(

R− (T ) ,
∣

∣R+ (T )
∣

∣

)

I (T <∞) |R (0) = u
]

, (1.1)

being δ ≥ 0 the discounted factor, and w(l, j), l ≥ 0, j > 0, the penalty function, so that φ(u) is

the expected discounted penalty payable at ruin. This function is known to satisfy a defective

renewal equation (Gerber & Shiu, 1998, Li & Garrido, 2004, Willmot, 2007). This function

can be used to study the traditional quantities of interest in classical ruin theory, such as ruin

probability, time of ruin or deficit at ruin. Therefore, depending on the penalty function w(l, j),

we can obtain different interpretations for the Gerber-Shiu function:

i) For w(l, j) = 1,

φ(u) = E
[

e−δT I (T <∞) |R (0) = u
]

,

i.e. the Laplace transform of the time of ruin being δ the parameter. In addition, if we

consider δ = 0, the ultimate ruin probability is obtained

φ(u) = ψ (u) .

ii) For w(l, j) = jm and m ≥ 1,

φ(u) = E
[

e−δT jmI (T <∞) |R (0) = u
]

,

and dividing this Gerber-Shiu function by the probability of ruin, the ordinary discounted

moments of the deficit at ruin if ruin occurs are obtained,

αm (Y ) =
E
[

e−δT jmI (T <∞) |R (0) = u
]

ψ (u)
. (1.2)

If we let δ = 0 in (1.2), the ordinary moments of the deficit at ruin if ruin occurs are

obtained.

iii) For w(l, j) = I (j ≤ y),

φ(u) = E
[

e−δT I (j ≤ y) I (T <∞) |R (0) = u
]

,

and dividing by the probability of ruin we obtain the distribution function of the discounted

deficit at ruin if ruin occurs,

FY (y) =
E
[

e−δT I (j ≤ y) I (T <∞) |R (0) = u
]

ψ (u)
. (1.3)

If we let δ = 0, the distribution function of the deficit at ruin if ruin occurs is obtained.
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The threshold proportional reinsurance strategy is a dynamic strategy with a retention level

that is not constant and depends on the level of the surplus, R (t). A retention level k1 is applied

whenever the reserves are less than a threshold b ≥ 0, and a retention level k2 is applied in the

other case. Then, the premium income retained is c1 and c2, respectively. We consider that the

retention levels give new positive security loadings for the insurer, i.e. the net profit condition is

always fulfilled. Then, we can define ρ1 = ρR − ρR−ρ
k1

and ρ2 = ρR − ρR−ρ
k2

, being ρR the loading

factor of reinsurer.

The main objective of this paper is to study the effect of the threshold proportional rein-

surance on the probability of ruin and on the other risk measures related with the deficit at

ruin. We also perform a comparative analysis with the proportional reinsurance. Our results

can assist the insurer in his reinsurance decision process concerning solvency (related optimality

problems in reinsurance can be found for instance in Dimitrova & Kaishev (2010), Kaishev &

Dimitrova (2006) and Castañer et al. (2013)).

After this introduction, the paper is organized as follows. In the next section some assump-

tions and some preliminaries are included. In Section 3.1, we present some general results for

the Gerber-Shiu function for the ruin probability, the ordinary moments and the distribution

function of the deficit at ruin if ruin occurs, when the individual claim amount follows a general

phase-type distribution. In Section 3.2, we assume a phase-type 2 distribution and analyzed

the previous results. Then, the explicit expressions are obtained. An interesting result about

the distribution of the deficit at ruin if ruin occurs in a model with a threshold reinsurance is

demonstrated in Theorem 3.4. In Section 4, some optimization and decision problems of the

reinsurance strategy are presented. In this analysis, the ruin probability and the deficit at ruin

if ruin occurs are used as decision tools for the insurer. This section includes some numerical

examples. Section 5 closes the paper giving some concluding remarks.

2. Assumptions and preliminaries

In this paper we analyze the deficit at ruin in the classical risk theory model assuming a com-

pound Poisson process for the aggregate claims and a phase-type distribution for the individual

claim amount, when the insurer considers a threshold proportional reinsurance. In this model

with threshold proportional reinsurance strategy, the discounted penalty function (1.1) behaves

differently, depending on whether initial surplus u is below or above the level b. Hence, for
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notational convenience, we write

φ(u) =







φ1(u), 0 ≤ u < b,

φ2(u), u ≥ b.

In Castañer et al. (2010) a theorem for the integro-differential equation for the Gerber-Shiu

function (1.1) is obtained in a Poisson model for the claim process. We include this theorem

in order that the paper is self-contained, taking into account that we will use it in the next

sections.

Theorem 2.1. The discounted penalty function φ(u) in a Poisson process model satisfies the

integro-differential equations

φ′(u) =







φ′1(u), 0 ≤ u < b,

φ′2(u), u ≥ b,
(2.1)

where

φ′1(u) =
λ+ δ

c1
φ1(u)−

λ

c1

∫ u
k1

0
φ1(u− k1x)dF (x)−

λ

c1
ξ1(u),

φ′2(u) =
λ+ δ

c2
φ2(u)−

λ

c2

[

∫ u−b
k2

0
φ2(u− k2x)dF (x) (2.2)

+

∫ u
k2

u−b
k2

φ1(u− k2x)dF (x)

]

− λ

c2
ξ2(u),

and

ξ1(u) =

∫

∞

u
k1

w(u, k1x− u)f(x)dx, ξ2(u) =

∫

∞

u
k2

w(u, k2x− u)f(x)dx. (2.3)

Let w (R− (T ) , |R+ (T )|) be a non-negative function of R− (T ) > 0, the surplus immediately

before ruin, and R+ (T ) > 0 the surplus at ruin.

As we focus our analysis on the deficit at ruin if ruin occurs, we will consider only a specific

subgroup of penalty functionsWD = {w(l, j) = jm, w(l, j) = I (j ≤ y) , w(l, j) = 1} withm > 0.

We assume that the individual claim amount follows a phase-type distribution PH(α, S).

Key results of modern theory of phase-type distributions including theoretical properties, char-

acterization and applications can be found in Neuts (1981, 1989), O’Cinneide (1990), Latouche

& Ramaswami (1999) or Asmussen (2003). Most of the original applications of phase-type dis-

tributions are in queuing theory, but these kind of distributions are widely used in risk theory
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in the last years. In Asmussen & Albrecher (2010) many applications in this field can be found.

Other important references on phase-type distributions in risk theory context include Asmussen

& Rolski (1992), Rolski et al. (1999), Asmussen & Bladt (1996), Bladt (2005) or Drekic et al.

(2004). We present a brief overview of phase-type distributions and their properties.

Phase-type distributions: We consider a continuous time Markov chain with a single absorbing

state 0 and N transient states. The row vector α contains the probabilities αj that the process

starts in the various transient states j = 1, 2, . . . , N . If the probability of starting the process in

the absorbing state is zero,
∑N

j=1 αj = 1 . Then, αeT = 1 where eT is a column vector of ones

with n× 1 elements.

The infinitesimal generator Q for the continuous time Markov chain is given by

Q =





0 0

S0 S



 ,

where S is the matrix of transition rates among the transient states and S0 is the column

vector of absorption rates into state 0 from the transient states. Necessarily, S0 = −SeT , and
S is an N × N matrix whose diagonal entries are negative and whose other entries are non-

negative. Under these assumptions, the distribution of time X until the process reaches the

absorbing state is said to be phase-type distributed and is denoted PH(α, S) with distribution

FX (x) = 1 − α exp (Sx) eT for x ≥ 0, density function fX (x) = α exp (Sx)S0 for x > 0 and

ordinary moments αm (X) = (−1)mm!αS−meT , being exp (·) the matrix exponential.

The Laplace transform of the density function f̃X (t) =
∫

∞

0 e−txfX (x) dx is rational of degree

≤ N ,

f̃X (t) =
a (t)

b (t)
,

with a (t) =
N
∑

i=0
ait

i, a0 = 0, b (t) =
N
∑

i=0
bit

i, b0 = 1 and fX (x) satisfies the linear differential

equation
N
∑

i=0

bif
(i)
X (x) = 0. (2.4)

The finite mixture of phase-type distributions is phase-type distributed. Let Xi, i = 1, . . . , k

distributed as PH(αi, Si), and Y = IiXi being
∑k

i=1 Ii = 1, and P (Ii = 1) = pi then Y is

PH(α, S) with
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α = (p1α1, ..., pkαk) and S =

















S1 0 · · · 0

0 S2 · · · 0
...

...
...

0 0 · · · Sk

















. (2.5)

Phase-type distributions with N = 2 are phase-type distributions with

S =





−λ αλ

βµ −µ



 , (2.6)

where λ, µ > 0 and 0 ≤ α, β ≤ 1, αβ < 1 with a density satisfying (2.4), i.e., f (x) + b1f
′ (x) +

b2f
′′ (x) = 0. If b2 < 0, the exponential distribution is obtained and all other phase-type

distributions are obtained when b2 > 0.

In Dickson & Hipp (2000) it is demonstrated that any phase-type distribution with N = 2

is either an hyper-exponential distribution or a linear combination of an exponential and an

Erlang(2) with the same scalar parameter. Then, following Dickson & Hipp (2000), a phase-

type distribution with N = 2, can be always expressed in standardized form with (α1, α2),

S =





−a1 a2

0 −a4



, a1, a2, a4 ≥ 0, being a1 = β1, a4 = β2 and a2 = 0 for the hyper-

exponential(β1, β2) distribution and a1 = a2 = a4 = β for a linear combination of an exponential(β)

and an Erlang(2, β). It is easy to prove that the following relations are fulfilled for the stan-

dardized form, b1 = a1+a4
a1a4

and b2 = 1
a1a4

and that the density function using the standardized

form is f (x) = α1 (a1 − a2) e
−a1x + α2a4e

−a4x + α1a4a2xe
−a1x.

3. Gerber-Shiu function with X phase-type 2 distributed

In order to find the expression of the Gerber-Shiu function if the individual claim amount

follows a phase-type distribution we first need to obtain the ordinary differential equation from

the integro-differential equation included in Theorem 2.1 and then, solve it. In this section, we

present some results that are general and useful for any phase-type, the ordinary differential

equation and the expression for ξs(u) for s = 1, 2. Next, we obtain the explicit expression for

the Gerber-Shiu function for N = 2.

3.1. General results

In Theorem 3.1, we present the ordinary differential equation for the Gerber-Shiu function in a

Poisson process model.It is general with respect the three specific expressions included in WD.
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This is an important result that implies that if we are analyzing the probability of ruin or the

deficit at ruin if ruin occurs, the structure of the solution will be the same. Then, where is the

difference? The difference is included in the expression of ξs(u) for s = 1, 2. In Theorem 3.2, we

present a general expression of ξs(u).

Theorem 3.1. If the individual claim amount is distributed as a PH(α, S) and w(l, j) = w (j),

φ (u) is the solution of the ordinary differential equation,

φN+1)
s (u) =

(

δ

cskNs bN

)

φs (u) +

(

λ+ δ

cs
− bN−1

ksbN

)

φN)
s (u)

−
N−1
∑

j=1

1

k
N−j
s

(

λ

cs
fN−1−j)(0) +

bj−1

ksbN
− (λ+ δ) bj

csbN
(3.1)

+
λ

csbN

N−1
∑

h=j+1

bhf
h−j−1)(0)



φj)s (u) ,

where φs (u), s = 1,2 being s = 1 for 0 < u < b and s = 2 for u > b.

The proof of Theorem 3.1 is included in Appendix A.

Theorem 3.2. Let the individual claim amount X ∼ PH (α, S). Then

ξs(u) = Hs(u) ·Gs, s = 1, 2,

being Hs(u) = (1− FXs (u)), S
∗ = S

ks
, Xs ∼ PH(α, S∗) and

Gs =



















αm (Z) if w (l, j) = jm, m ≥ 1,

FZ (y) if w (l, j) = I(j ≤ y),

1 if w (l, j) = 1,

for Z ∼ PH(α∗, S∗) and α∗ = α exp(S∗u)
Hs(u)

.

Proof. Taking into account (2.3), if the penalty function is equal to 1, assuming that X ∼

PH (α, S)

ξs(u) =

∫

∞

u
ks

fX(x)dx = α exp (S∗u) eT = 1− FXs (u) = Hs(u), (3.2)

where S∗ = S
ks

and Xs ∼ PH(α, S∗).
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If the penalty function is jm, then

ξs(u) =

∫

∞

u
ks

(ksx− u)m fX(x)dx =

∫

∞

0
zm

1

ks
fX

(

u+ z

ks

)

dz (3.3)

=

∫

∞

0
zmα exp (S∗u) exp (S∗z)

(

−S∗eT
)

dz, s = 1, 2.

Let α∗ = α exp(S∗u)
Hs(u)

, then

ξs(u) = Hs(u)

∫

∞

0
zmα∗ exp (S∗z)

(

−S∗eT
)

dz, s = 1, 2,

and taking into account that α∗ exp (S∗z)
(

−S∗eT
)

= fZ (z) being Z ∼ PH(α∗, S∗),

ξs(u) = Hs(u) (−1)mm!α∗ (S∗)−m eT = Hs(u)αm (Z) , s = 1, 2. (3.4)

If the penalty function is I(j ≤ y),

ξs(u) =

∫ u+y

ks

u
ks

dFX (x) = 1− α exp (S∗ (u+ y)) eT − 1 + α exp (S∗u) eT

= α exp (S∗u) eT − α exp (S∗u) exp (S∗y) eT , s = 1, 2, (3.5)

and considering α∗ and Hs(u),

ξs(u) = Hs(u)
(

1− α∗ exp (S∗y) eT
)

= Hs(u)FZ (y) , s = 1, 2. (3.6)

�

3.2. Results for N = 2

From Theorem 3.2, we derive the following corollary, that gives the expression of ξs(u), s = 1, 2

assuming a PH(α, S) with N = 2 expressed in standardized form.

Corollary 3.3. From Theorem 3.2, if the individual claim amount is PH(α, S) with N = 2

expressed in standardized form, being ai,s the elements of S∗ = S
ks
, s = 1, 2,

ξs(u) = C
(s)
1 e−a1,su + C

(s)
2 e−a4,su + C

(s)
3 ue−a1,su, s = 1, 2.

For the penalty functions

i) w(l, j) = 1: C
(s)
1 = α1, C

(s)
2 = α2 and C

(s)
3 = α1a2,s.

ii) w(l, j) = jm: C
(s)
1 = α1

(

m!
am1,s

+m!
a2,s

am+1
1,s

m
∑

i=1
ai1,sa

−i
4,s

)

, C
(s)
2 = α2

m!
am4,s

and C
(s)
3 = α1a2,s

m!
am4,s

.
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iii) w(l, j) = I(j ≤ y): C
(s)
1 = α1 (1− e−a1,sy), C

(s)
2 = α2 (1− e−a4,sy) − α1a2,sye

−a1,sy and

C
(s)
3 = α1a2,s (1− e−a1,sy).

Proof. Let X ∼ PH (α, S), being S a matrix expressed in standardized form, and being ai,s

the elements of S∗ = S
ks
, s = 1, 2.

For w(l, j) = 1, from (3.2), if we let ai,s =
ai
ks
,

ξs(u) = (α1, α2)





e−a1,su a2,sue
−a1,su

0 e−a4,su



 eT = α1e
−a1,su + α2e

−a4,su + α1a2,sue
−a1,su.

For w(l, j) = jm, from (3.4), and substituting α∗ = α exp(S∗u)
Hs(u)

,

ξs(u) = m! (−1)m α exp (S∗u) (S∗)−m eT

= m! (−1)m (α1, α2)





e−a1,su a2,sue
−a1,su

0 e−a4,su









−a1,s a2,s

0 −a4,s





−m

eT ,

being




−a1 a2

0 −a4





−m

= (−1)m







1
am1,s

a2,s

am+1
1,s

m
∑

i=1
ai1,sa

−i
4,s

0 1
am4,s






,

then

ξs(u) = α1

(

m!

am1,s
+m!

a2,s

am+1
1,s

m
∑

i=1

ai1,sa
−i
4,s

)

e−a1,su + α2
m!

am4,s
e−a4,su + α1

m!

am4,s
a2,sue

−a1,su.

And for w(l, j) = I(j ≤ y), from (3.6) and using α∗,

ξs(u) = α exp (S∗u) eT − α exp (S∗y) exp (S∗u) eT

= α1

(

1− e−a1,sy
)

e−a1,su +
(

α2

(

1− e−a4,sy
)

− α1a2,sye
−a1,sy

)

e−a4,su

+ α1

(

1− e−a1,sy
)

a2,sue
−a1,su.

Then, the corollary is proved. �

Obviously, from Corollary 3.3, it is possible to obtain the particular cases included in phase-

type 2 distributions. If we consider the hyper-exponential(β1, β2) distribution, a1 = β1, a2 = 0

and a4 = β2. Then, for the penalty function equal to 1, C
(s)
1 = α1, C

(s)
2 = α2 and C

(s)
3 = 0; for

the penalty function equal to jm, C
(s)
1 = α1

kms m!
βm
1

, C
(s)
2 = α2

kms m!
βm
2

and C
(s)
3 = 0; and for penalty

function equal to I(j ≤ y), C
(s)
1 = α1

(

1− e
−

β1
ks
y

)

, C
(s)
2 = α2

(

1− e
−

β2
ks
y

)

and C
(s)
3 = 0.
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If we consider a linear combination of an exponential(β) and an Erlang(2, β), a1 = a2 =

a4 = β. Then, for the penalty function equal to 1, C
(s)
1 = α1, C

(s)
2 = α2 and C

(s)
3 = α1

β
ks
; for

the penalty function equal to jm, C
(s)
1 = α1

kms (m+1)!
βm , C

(s)
2 = α2

kms m!
βm and C

(s)
3 = α1

km−1
s m!
βm−1 ; and

for the penalty function equal to I(j ≤ y), C
(s)
1 = α1

(

1− e
−

β

ks
y
)

, C
(s)
2 = α2

(

1− e
−

β

ks
y
)

−
α1

β
ks
ye

−
β

ks
y and C

(s)
3 = α1

β
ks

(

1− e
−

β

ks
y
)

. If, in addition, we consider α1 = 1 and α2 = 0, then

we get the Erlang(2, β) distribution. The exponential distribution is not a phase-type 2, but it

can be obtained considering that α1 = 0 and α2 = 1.

Once we have obtained the different expressions of ξs(u), we can solve the integro-differential

equation for the Gerber-Shiu function. From (3.1), if N = 2,

φ
′′′

s (u) =

(

λ+ δ

cs
− b1

ksb2

)

φ
′′

s (u) (3.7)

+

(

(λ+ δ) b1
csksb2

− b0

k2sb2
− λ

csks
f (0)

)

φ′s (u) +
δ

csk2sb2
φs (u) ,

where φs (u), s = 1, 2 being s = 1 for 0 < u < b and s = 2 for u > b.

In order to solve (3.7) we obtain the characteristic equation for 0 ≤ u < b,

r3 −
(

λ+ δ

c1
− b1

k1b2

)

r2 −
(

(λ+ δ) b1
c1k1b2

− b0

k21b2
− λ

c1k1
f (0)

)

r − δ

c1k
2
1b2

= 0,

and for u ≥ b,

r3 −
(

λ+ δ

c2
− b1

k2b2

)

r2 −
(

(λ+ δ) b1
c2k2b2

− b0

k22b2
− λ

c2k2
f (0)

)

r − δ

c2k
2
2b2

= 0,

with ri, i = 1, ..., 6, real and distinct roots of the characteristic equations, so

φ(u) =















φ1(u) =
3
∑

i=1
Fie

riu, 0 ≤ u < b,

φ2(u) =
6
∑

i=4
Fie

riu, u ≥ b.

(3.8)

To obtain the ruin probability, and the moments and the deficit at ruin (not their present values)

we have to consider δ = 0, so r3 = r6 = 0.

Then, to determine Fi, i = 1, . . . , 6, we need six equations. One equation is obtained from

lim
u→∞

φ(u) = 0, that gives F6 = 0. Another equation comes from the continuity condition

φ1(u)|u=b− = φ2(b). (3.9)

The other four conditions are obtained substituting (3.8) in (2.2), integrating and rearranging

terms, considering Corollary 3.3, and taking into account the values of a1, a2 and a4. For
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the hyper-exponential(β1, β2) distribution, let us define h1 =
C

(1)
1
α1

, h2 =
C

(1)
2
α2

, h3 =
C

(2)
1
α1

and

h4 =
C

(2)
2
α2

, then the four equations are

β1

3
∑

i=1

Fi

rik1 + β1
= h1,

β2

3
∑

i=1

Fi

rik1 + β2
= h2, (3.10)

β1

5
∑

i=4

Fie

(

ri+
β1
k2

)

b

rik2+β1
+ β1

3
∑

i=1

Fi

(

1−e

(

ri+
β1
k2

)

b

)

rik2+β1
= h3,

β2

5
∑

i=4

Fie

(

ri+
β2
k2

)

b

rik2 + β2
+ β2

3
∑

i=1

Fi

(

1−e

(

ri+
β2
k2

)

b

)

rik2+β2
= h4.

For the linear combination of an exponential(β) and an Erlang(2, β), let us define h1 =

C
(1)
1 + C

(1)
2 , h2 =

C
(1)
3 k1
α1β

, h3 = C
(2)
1 + C

(2)
2 and h4 =

C
(2)
3 k2
α1β

, then the four equations are

3
∑

i=1

α1Fiβ
2

(rik1 + β)2
+

3
∑

i=1

α2Fiβ

rik1 + β
= h1,

3
∑

i=1

Fiβ

rik1 + β
= h2, (3.11)

(

α2β−α1β
2b

k2

)

5
∑

i=4

Fie

(

ri+
β
k2

)

b

rik2+β
+ α1β

2
5
∑

i=4

Fie

(

ri+
β
k2

)

b

(rik2+β)
2 + α1β

2b
k2

3
∑

i=1

Fie

(

ri+
β
k2

)

b

rik2+β

+α1β
2

3
∑

i=1

Fi

(

1−e

(

ri+
β
k2

)

b

)

(rik2+β)
2 + α2β

3
∑

i=1

Fi

(

1−e

(

ri+
β
k2

)

b

)

rik2+β
= h3,

β

5
∑

i=4

Fie

(

ri+
β

k2

)

b

rik2 + β
+ β

3
∑

i=1

Fi

(

1−e

(

ri+
β
k2

)

b

)

rik2+β
= h4.

Let us rewrite the linear equation system formed by (3.9) and (3.10) or (3.11) in matrix

form, A · F = H, being F the vector of unknowns, F = (Fj)j=1,...,5, considering H the vector of

independent terms H = (0, h1, h2, h3, h4), and A the matrix of the coefficients of the system.

Solving the system we obtain F = A−1H, so Fj =
4
∑

i=1
hi · fji, j = 1, ..., 5, being fji the elements

of the matrix A−1. From (3.8),

φ(u) =















φ1(u) =
3
∑

i=1
Fie

riu =
4
∑

z=1
hz ·

3
∑

i=1
fize

riu =
4
∑

z=1
hz · cz (u) , 0 ≤ u < b,

φ2(u) =
5
∑

i=4
Fie

riu =
4
∑

z=1
hz ·

5
∑

i=4
fize

riu =
4
∑

z=1
hz · dz (u) , u ≥ b.

(3.12)
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being cz (u) =
3
∑

i=1
fize

riu and dz (u) =
5
∑

i=4
fize

riu.

From the definition of hz, z = 1, ..., 4, it is straightforward that in the ruin probability case,

hz = 1. Then, from (3.12), φ1(u) = ψ1 (u) =
4
∑

z=1
cz (u) and φ2(u) = ψ2 (u) =

4
∑

z=1
dz (u).

Theorem 3.4. The deficit at ruin if ruin occurs, Y , is distributed as a phase-type PH (τ (u) ,M)

where τ (u) = (P1z (u))z=1,...,4 being P1z (u) =
cz(u)
ψ1(u)

if 0 ≤ u < b, and τ (u) = (P2z (u))z=1,...,4

being P2z (u) =
dz(u)
ψ2(u)

if u ≥ b, and

M =





T1 0

0 T2



 ,

being Ts =





−a1
ks

α1a2
ks

0 −a4
ks



, s = 1, 2.

Proof. The distribution of the deficit at ruin if ruin occurs from (1.3) and δ = 0 is FY (y) =

φ(u)
ψ(u) . For 0 ≤ u < b, from (3.12),

FY (y) = φ1(u)
ψ1(u)

= 1
ψ1(u)

4
∑

z=1

hz · cz (u) =
4
∑

z=1

hz · P1z (u) . (3.13)

Knowing the values of hz, z = 1, ..., 4, defined in (3.10) and (3.11), and considering the values

of C
(s)
i in Corollary 3.3 for w(l, j) = I(j ≤ y), substituting in (3.13), and grouping terms we

obtain

FY (y) = 1−W1 (u)
(

P11(u)
W1(u)

,
P12(u)
W1(u)

)

exp (T1y) e
T −W2 (u)

(

P13(u)
W2(u)

,
P14(u)
W2(u)

)

exp (T2y) e
T , (3.14)

being

W1 (u) = P11 (u) + P12 (u) ,

W2 (u) = P13 (u) + P14 (u) ,

Ts =





−a1
ks

−α1a2
ks

0 −a4
ks



 .

Let γ =
(

P11(u)
W1(u)

,
P12(u)
W1(u)

)

and δ =
(

P13(u)
W2(u)

,
P14(u)
W2(u)

)

, then (3.14) can be written as

FY (y) = 1−W1 (u) γ exp(T1y)e
T −W2 (u) δ exp(T2y)e

T .

Taking into account that Ts, s = 1, 2 has the structure defined in (2.6), then the distribution of

the deficit at ruin if ruin occurs is a mixture of two phase-type distributions, Y1 ∼ PH (γ, T1)
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and Y2 ∼ PH (δ, T2), being the weights W1 (u) and W2 (u). Then, considering that the finite

mixture of a phase-type distribution is a phase-type distribution, from (2.5), the theorem for

0 ≤ u < b is proved.

For u ≥ b, applying a similar process it can be demonstrated that Y ∼ PH (τ (u) ,M) , with

τ (u) = (P2z (u))z=1,...,4. So, Y is a mixture of two phase-type distributions Y1 ∼ PH (µ, T1)

and Y2 ∼ PH (υ, T2) with µ =
(

P21(u)
V1(u)

,
P22(u)
V1(u)

)

and υ =
(

P23(u)
V2(u)

,
P24(u)
V2(u)

)

, being the weights

V1 (u) = (P21 (u) + P22 (u)) and V2 (u) = (P23 (u) + P24 (u)). �

Example 3.5. As an example, we calculate the probabilities of ruin and the distribution of the

deficit at ruin if ruin occurs assuming a threshold reinsurance strategy with Xi ∼Erlang(2, β)

and the following values for the parameters β = 2, λ = 1, b = 2, k1 = 0.8, k2 = 0.45, ρ = 0.15,

ρR = 0.25 and δ = 0.

Let us first obtain the ruin probability. We know that, in this case, the independent terms of

system (3.11), hz, z = 1, ..., 4 are equal to one and that the matrix A−1 is

A−1 =























0.15396 −0.16072 1.632× 10−5 1.6139× 10−4 0.24325

0.1452 0.34836 −1.1930× 10−3 −1.1797× 10−2 −17.781

0.16344 0.28890 1.3237× 10−3 0.01309 19.73

29.622 −74.895 8.8605 60.694 −66773

0.30913 0.62036 5.7433× 10−4 5.7328× 10−3 7.7797























.

Then, we have

ψ1 (u) = 0.466753− 0.0065744e−3.70127u + 0.480572e−0.187624u,

ψ2 (u) = 24.2807e−6.6464u + 0.935799e−0.0803242u.

Let us know consider the deficit at ruin if ruin occurs. From Theorem 3.4, Y is distributed

as a phase-type, PH (τ (u) ,M), with

M =

















−2.5 2.5 0 0

0 −2.5 0 0

0 0 −4.
⌢
4 4.

⌢
4

0 0 0 −4.
⌢
4

















,

τ(u) =
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













































(

0.163+0.154e−3.701u+0.145e−0.188u

0.467−0.007e−3.701u+0.481e−0.188u ,
0.289−0.161e−3.701u+0.348e−0.188u

0.467−0.007e−3.701u+0.481e−0.188u ,

0.001+0.00001e−3.701u
−0.001e−0.188u

0.467−0.007e−3.701u+0.481e−0.188u , 0.013+0.0001e−3.701u
−0.012e−0.188u

0.467−0.007e−3.701u+0.481e−0.188u

) 0 ≤ u < b,

(

29.622e−6.646u+0.309e−0.080u

24.281e−6.646u+0.936e−0.080u ,
−74.895e−6.646u+0.620e−0.080u

24.281e−6.646u+0.936e−0.080u ,

8.861e−6.646u+0.0006e−0.080u

24.281e−6.646u+0.936e−0.080u ,
60.694e−6.646u+0.006e−0.080u

24.281e−6.646u+0.936e−0.080u

) u ≥ b.

For example, for u = 0,

ψ1 (0) = 0.94075,

τ (0) =
(

0.49174, 0.50655, 1.563× 10−4, 1.546× 10−3
)

,

FY (y) = 1− (0.99829 + 1.22935y) e−2.5y − (0.00170244 + 0.000694874y) e−4.
⌢
4 y,

αm (Y ) = (1.49004× 0.4m + 0.00185879× 0.225m)m!

and for u = 3,

ψ2 (3) = 0.740473,

τ (3) = (0.33034, 0.66292, 0.000613754, 0.00612626) ,

FY (y) = 1− (0.99326 + 0.825849y) e−2.5y − (0.00674 + 0.0027278y) e−4.
⌢
4 y,

αm (Y ) = (1.3236× 0.4m + 0.00735376× 0.225m)m!

4. Influence of (threshold) proportional reinsurance on the deficit at ruin if ruin

occurs

In this section, we quantify the effect on the deficit at ruin if ruin occurs of a proportional

reinsurance (included the threshold). It is known (Drekic et al., 2004) that when the individual

claim amount follows a phase-type distribution PH (α, S), the deficit at ruin if ruin occurs, Y ,

is also phase-type distributed with representation PH (ΠG, S), where

ΠG =
α+ exp(uB)

ψ (u)
,

with B = S + D, D = S0α+, S
0 = −SeT being α+ = −λ

c
αS−1, in the Poisson case. We also

have ψ (u) = α+ exp(uB)eT .

Then, if the insurer uses a proportional reinsurance contract to reduce the risk, which is the

effect on the probability of ruin and on the deficit at ruin if ruin occurs? Let us consider a

proportional reinsurance with parameter k, 0 < k ≤ 1, such that the retained claim amount for
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the insurer is XR = kX and the retained premium is λE [X] (1 + ρ) − λE [X] (1 − k)(1 + ρR).

We consider that the retention level k gives new positive security loading for the insurer, ρN =

ρ−ρR(1−k)
k

> 0, i.e., the net profit condition is always fulfilled (see Castañer et al. (2007) for

more details). Then, if X follows a phase-type distribution PH (α, S), XR is also phase-type

distributed, PH
(

α, S
k

)

. The ruin probability with proportional reinsurance is

ψ (u) =
αS−1 exp(uBR)eT

αS−1eT (1 + ρN )
,

being BR = S
k
− S
k
eT αS−1

αS−1eT (1+ρN )
. The deficit at ruin if ruin occurs, Y , is phase-type distributed,

PH
(

ΠRG,
S
k

)

, where

ΠRG =
αS−1 exp(uBR)

αS−1 exp(uBR)eT
.

Hence, the expectation and the variance of the deficit at ruin if ruin occurs can be easily

calculated: E[Y ] = −ΠRGkS
−1eT and V [Y ] = 2ΠRGk

2S−2eT −
(

ΠRGkS
−1eT

)2
. The Value

at Risk of Y at level p, V aRp[Y ] is such that FY (V aRp[Y ]) = p, that is V aRp[Y ] = F−1
Y (p).

However, there is no explicit expression for this V aRp[Y ], it has to be calculated numerically

(the package actuar in Dutang et al. (2008) provides functions for phase-type distributions).

The Tail Value at Risk of Y at level p, TV aRp[Y ], can be calculated from the Value at Risk at

the same level considering the following formula (Cai & Li, 2005),

TV aRp[Y ] = V aRp[Y ]− ΠRGS
−1 exp(V aRp[Y ]S

k
)eT

ΠRG exp(V aRp[Y ]S
k
)eT

.

As an application, we develop the example that has first been used by Gerber et al. (1987)

and after by Drekic et al. (2004). They consider an individual claim amount distribution that

is an equal mixture of two exponentials at rates 3 and 7 respectively, with Poisson claims

at rate λ = 1 and a relative security loading ρ = 0.4. In this case, X is PH (α, S), where

α = (0.5, 0.5), S =





−3 0

0 −7



 and B =





−3
2

9
14

7
2 −11

2



. The ruin probability is ψ (u) =

24e−u+e−6u

35 . The deficit at ruin if ruin occurs, Y , is phase-type distributed, PH (ΠG, S), where

ΠG =
(

42−7e−5u

48+2e−5u ,
6+9e−5u

48+2e−5u

)

, being

FY (y) = 1− 6e5u−7y + 42e5u−3y + 9e−7y − 7e−3y

2 + 48e5u

and

E[Y ] =
156− 11e−5u

21e−5u + 504
,

V [Y ] =
26 352− 383e2(−5u) − 744e−5u

441e2(−5u) + 21 168e−5u + 254 016
.
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It is straightforward to include in the model a proportional reinsurance. Let consider a

retention level k and a security loading of the reinsurer ρR = 0.5, with 0.2 < k ≤ 1. Then, the

net security loading for the insurer is ρN = 0.5k−0.1
k

. The ruin probability is

ψ (u) =
e

(5−54k+N)u
k(−1+15k) k

(

−4 + 165k + 5N + e
2Nu

k−15k2 (4− 165k + 5N)
)

(−1 + 15k)N
(4.15)

being N =
√
4− 120k + 1341k2. Figure 1 shows the behaviour of the probability of ruin as a

function of u and k (left-hand side plot) including the level curves in the right-hand side plot.

Figure 1: Ruin probability for different values of u and k

The deficit at ruin if ruin occurs, Y , is phase-type distributed, PH
(

ΠRG,
S
k

)

, with

ΠRG =







7
(

−2 + 51k +N + e
2Nu

k−15k2 (2− 51k +N)
)

2
(

−4 + 165k + 5N + e
2Nu

k−15k2 (4− 165k + 5N)
) ,

3
(

2− 9k +N + e
2Nu

k−15k2 (−2 + 9k +N)
)

2
(

−4 + 165k + 5N + e
2Nu

k−15k2 (4− 165k + 5N)
)







and

E[Y ] = −
k
(

40− 1209k + e
2Nu

k−15k2 (−40 + 1209k − 29N)− 29N
)

21
(

−4 + 165k + 5N + e
2Nu

k−15k2 (4− 165k + 5N)
) ,

V [Y ] =
2k2

(

−84e
2Nu

k−15k2
(

−37 + 530k + 375k2
)

+M − 1160N + k(−98820 + 38589N)
)

441
(

−4 + 165k + 5N + e
2Nu

k−15k2 (4− 165k + 5N)
)2

+
2k2

(

e
4Nu

k−15k2 (M + 1160N − 3k(32940 + 12863N))
)

441
(

−4 + 165k + 5N + e
2Nu

k−15k2 (4− 165k + 5N)
)2 ,
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being M = 2482 + 1368819k2.

We consider now a threshold proportional reinsurance, that is defined by its three parameters

(b, k1, k2). In this case, the probability of ruin is given by (3.12), and the deficit at ruin if ruin

occurs is phase-type 4 distributed (see Theorem 3.4). The explicit expressions of the probability

of ruin and the different measures of the deficit at ruin if ruin occurs can then be easily obtained

(see Example 3.5 for the Erlang(2, β)).

Optimization problems regarding ruin probability. Which is the best strategy in order to

minimize the ruin probability of the insurer? In order to answer this question we solve two

optimization problems. Firstly, the insurer only considers the proportional reinsurance option.

Let ψ(k) be the ruin probability when all the variables that influence the probability are fixed

except the retention level k,

min

k,

0.2 < k ≤ 1

ψ(k) (4.16)

being (4.15) the expression for the probability of ruin in this case. It can be proved that this

optimum exists, but the expressions for the optimal point and the minimum value have not

been included for the sake of brevity. In Table 1, we include the results of this minimization for

different values of u, being k∗ the minimum point. The expectation, the variance and the Value

at Risk and the Tail Value at Risk for different levels p (0.95, 0.99 and 0.995) of the deficit at

ruin if ruin occurs can also be found in Table 1 for the optimal k∗.

Table 1: Minimum probabilities of ruin with proportional reinsurance and E[Y ], V [Y ], V aRp[Y ] and TV aRp[Y ]

u k∗ ψ(k∗) E[Y ] V [Y ] V aR0.95[Y ] TV aR0.95[Y ] V aR0.99[Y ] TV aR0.99[Y ] V aR0.995[Y ] TV aR0.995[Y ]

0 1 0.714286 0.276 0.0915 0.883824 1.214810 1.416660 1.749710 1.647410 1.980630

0.25 0.466294 0.497108 0.143 0.0223 0.442170 0.597268 0.691811 0.847203 0.799507 0.954922

0.50 0.407213 0.321745 0.125 0.0171 0.387419 0.522888 0.605465 0.741171 0.699518 0.835243

1 0.381941 0.132298 0.117 0.0150 0.363249 0.490308 0.567759 0.695043 0.655975 0.783277

2 0.370573 0.022125 0.114 0.0141 0.352356 0.475633 0.550778 0.674273 0.636367 0.759880

3 0.366956 0.003691 0.113 0.0139 0.348890 0.470963 0.545374 0.667664 0.630129 0.752436

5 0.364121 0.000103 0.112 0.0136 0.346174 0.467303 0.541139 0.662484 0.625239 0.746601

Table 1 shows that the minimum ruin probability and the optimal retention level decrease

as the initial reserves are increased. Considering that the insurer retains precisely that optimal

level that minimizes the ruin probability, the measures analyzed in the table show a decrease in

all cases when the initial reserves are higher. As a particular case, the results show that if the
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insurer has zero initial reserves, the best option is not to reinsure (k∗ = 1) and to retain all the

business (this result is consistent with the one obtained in Castañer et al. (2012)).

The second optimization problem appears when the insurer considers the threshold propor-

tional reinsurance option (then, (4.16) is a particular case). Let ψ(b, k1, k2) be the ruin prob-

ability as a function of (b, k1, k2) when u is considered to be a parameter. Thus, the problem

is,

min

b, k1, k2,

0.2 < k1 ≤ 1,

0.2 < k2 ≤ 1

ψ(b, k1, k2) (4.17)

where the ruin probability is calculated with (3.12). This problem is solved numerically with

the function NMinimize of the software Mathematica. Table 2 includes the optimum (b∗, k∗1, k
∗

2)

with the corresponding minimum probability of ruin for different values of u. We have also

included E[Y ], V [Y ], V aRp[Y ] and TV aRp[Y ] as in Table 1 for proportional reinsurance.

Table 2: Minimum probabilities of ruin with threshold proportional reinsurance and E[Y ], V [Y ], V aRp[Y ] and

TV aRp[Y ]

u (b∗, k∗1, k
∗

2) ψ(b∗, k∗1, k
∗

2) E[Y ] V [Y ] V aR0.95[Y ] TV aR0.95[Y ] V aR0.99[Y ] TV aR0.99[Y ] V aR0.995[Y ] TV aR0.995[Y ]

0 (0.403113, 1, 0.35665) 0.645002 0.25746 0.08426 0.839819 1.16940 1.37048 1.70337 1.60106 1.93422

0.25 (0.403113, 1, 0.35665) 0.428963 0.26051 0.08640 0.851860 1.18255 1.38428 1.71732 1.61502 1.94824

0.50 (0.403163, 1, 0.35716) 0.277539 0.24633 0.08087 0.817571 1.14735 1.34860 1.68156 1.57926 1.91245

1 (0.403300, 1, 0.35849) 0.113311 0.24590 0.08065 0.816265 1.14598 1.34719 1.68015 1.57784 1.91104

2 (0.403379, 1, 0.35922) 0.018881 0.24580 0.08059 0.815909 1.14560 1.34680 1.67976 1.57745 1.91064

3 (0.403405, 1, 0.35946) 0.003146 0.24577 0.08057 0.815792 1.14547 1.34667 1.67963 1.57732 1.91051

5 (0.403426, 1, 0.35966) 0.000087 0.24575 0.08055 0.815695 1.14537 1.34656 1.67952 1.57721 1.91040

In this second optimization, the results in Table 2 show that the optimal point slightly varies

in spite of the increase in the initial level of reserves. However, as expected, the minimal ruin

probability decreases when the initial reserves increase. At the optimal point, the behaviour

of the expectation, the variance, the V aR and the TV aR is not monotone with respect to the

initial reserves. All these risk measures slightly increase, from u = 0, and then slowly decrease

as the initial reserves are increased.

With the threshold proportional reinsurance, the insurer can always obtain a lower ruin

probability than with the proportional one (with a constant retention level). In Table 3, the

differences of these two minimum probabilities of ruin (the first one attained with proportional

reinsurance and the second one attained with threshold proportional reinsurance) are shown,
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in relative values, for different u. These relative differences are less important when the initial

reserves are small and that these differences increase with respect to the initial reserves, up to

a specific bound (in this case a 15% approximately).

Table 3: Relative values with respect to proportional reinsurance

u
ψ(k∗)−ψ(b∗,k∗1 ,k

∗

2)
ψ(k∗) × 100

0 9.6998

0.25 13.708

0.5 13.739

1 14.352

2 14.662

3 14.766

5 14.849

Optimization and decision problems including the deficit at ruin if ruin occurs. Does an

optimal reinsurance strategy such that minimizes the different risk measures of the deficit at

ruin if ruin occurs exist? The answer to this problem is no, because the optimal strategy would

be to retain nothing.

Then, let us consider the deficit at ruin if ruin occurs as an additional criterion to the ruin

probability. We have seen (Tables 1 and 2) that for a fixed u, the minimum ruin probability that

can be attained with a threshold proportional strategy is always lower than the corresponding

one with proportional reinsurance.

For a fixed u, we can obtain all the equivalent strategies to the optimal one with proportional

reinsurance, in the sense that with all these strategies the insurer obtains the same probability

of ruin. Then, the risk measures (expectation, Value at Risk and Tail Value at Risk) related to

the deficit at ruin if ruin occurs are taken as an additional decision criterion to choose between

these strategies.

Lets consider, without loss of generality, that u = 0.25. The minimum ruin probability

is 0.497108, with k = 0.466294. We obtain an infinite number of (b, k1, k2) that also allows

obtaining this probability of ruin, with a bounded value for b, 0 ≤ b ≤ 2.99566. Figure 2

includes, for several b, the values of k1 and k2 that give the same ruin probability 0.497108; the

combination k1 = k2 = 0.466294 is a specific point of all these curves (the point where all of
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them coincide).

Figure 2: level curves of ψ(u = 0.25) = 0.497108 for some levels of b

For the insurer, a proportional reinsurance with a retention level 0.466294 is indifferent to all

these other threshold proportional reinsurance strategies if the insurer only considers the ruin

probability. But what happens as regards the deficit at ruin? Let us focus, for instance, on the

case b = 0.5. In Figure 3, this curve is represented again and the point corresponding to the

proportional reinsurance is marked in red while other selected points are marked in gray.

Figure 3: level curve of ψ(u = 0.25) = 0.497108 for b = 0.5

In Figure 4, the different risk measures of the deficit at ruin, E[Y ], V aRp[Y ], TV aRp[Y ], for

p = 0.95, p = 0.99 and p = 0.995, are depicted.
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Figure 4: E[Y ], V aRp[Y ] and TV aRp[Y ] for p = 0.95 (black), p = 0.99 (blue) and p = 0.995 (green)

If we consider the expected deficit at ruin if ruin occurs, for b = 0.5 (see Figure 4), we conclude

that all the threshold strategies with retention levels k1 < 0.466294 = k∗ and k2 < 0.466294 = k∗

are best options than the proportional one, because the expected deficit at ruin if ruin occurs is

lower. This result can be extended to the other measures, V aRp and TV aRp, for different levels

p.

Let us consider also the other possible combination (b, k1, k2) with 0 ≤ b ≤ 2.99566, which

are equivalent to the proportional one (k1 = k2 = k∗ = 0.466294). In Figure 5, the expectation

of the deficit at ruin if ruin occurs is plotted for some of these combinations with different b.

We observe that not all of these combinations must fulfill the condition k1 ≤ k∗ and k2 ≤ k∗,

in order to improve the expectation of the deficit at ruin if ruin occurs. A similar conclusion is

reached for the other risk measures.
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Figure 5: E[Y ] for u = 0.25 and different b between 0 ≤ b ≤ 2.99566 in a threshold proportional reinsurance

5. Concluding remarks

The insurer can minimize his ruin probability choosing an appropriate constant retention level

or, in an alternative way, using an appropriate combination of two different retention levels and

a threshold surplus level, b, to change from one retention level to the other.

From our analysis, we conclude that the threshold proportional reinsurance is the best option

for the insurer if he takes his decisions looking only at the ruin probability, because the threshold

proportional reinsurance allows him reducing the ruin probability without increasing the initial

capital. This superiority of the threshold proportional reinsurance is stressed (reinforced) when

the insurer considers also the random variable deficit at ruin if ruin occurs to take his decisions.

We have seen in our examples that, with the threshold proportional reinsurance, the insurer can

improve (reduce) the expectation (and the V aR and the TV aR) of the deficit at ruin if ruin

occurs with the same ruin probability than the best proportional reinsurance.
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Appendix

Appendix A. Proof of Theorem 3.1

Consider that f(x) is the density function of a phase-type distribution satisfying (2.4), i.e., a

differential equation of order N
N
∑

i=0

bif
(i)(x) = 0, (A.1)

with b0 = 1, bi, i ≥ 1, ..., N ∈ R and f (0)(x) = f(x) (Hipp, 2006).

From (A.1), it is straightforward to obtain

fN)(x) = − 1

bN

N−1
∑

i=0

bif
(i)(x). (A.2)

For 0 < u < b, we need some previous results:

Let us define INh as the h-th integral,

INh =

∫ u
k1

0
φ1 (u− k1x) f

(h)(x)dx,

being h = 0, ..., N and f (0)(x) = f(x). We need the following properties of INh:

i) The derivative of INh with respect to u is

IN ′

h =
f (h)(0)

k1
φ1(u) +

INh+1

k1
, (A.3)

ii) The h-th derivative of IN0 with respect to u is

IN
(h)
0 =

INh

kh1
+
h−1
∑

s=0

φ
(s)
1 (u)

kh−s1

fh−1−s)(0), (A.4)

where 1 ≤ h ≤ N .

iii) From (A.2) we can obtain INN ,

INN = − 1

bN

N−1
∑

h=0

bhINh. (A.5)

For w(l, j) = w(j), we define now Iξh as the h-th integral

Iξh =

∫

∞

u
k1

w(k1x− u)f (h)(x)dx, (A.6)

being h = 0, ..., N and f (0)(x) = f(x). Some useful properties of Iξh are,
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i) The derivative of Iξh with respect to u is

Iξ′h =
1

k1
Iξh+1. (A.7)

ii) The h-th derivative of Iξ0 with respect to u is

Iξ
(h)
0 =

1

kh1
Iξh, (A.8)

where 1 ≤ h ≤ N .

iii) From (A.2) we can obtain IξN

IξN = − 1

bN

N−1
∑

h=0

bhIξh. (A.9)

The integro-differential equation (2.1) and its derivatives with respect to u until N +1 using

(A.4) are

φ′1(u) =
λ+ δ

c1
φ1(u)−

λ

c1
IN0 −

λ

c1
Iξ0, (A.10)

φ
h+1)
1 (u) =

λ+ δ

c1
φ
h)
1 (u)− λ

c1
Iξ
h)
0 (A.11)

− λ

c1

(

INh

kh1
+

h−1
∑

s=0

φ
s)
1 (u)

kh−s1

fh−1−s)(0)

)

, 1 ≤ h ≤ N.

And isolating IN0 and INh in (A.10) and (A.11) and substituting in (A.5), and rearranging

terms,

INN =
1

bN
Iξ0 +

1

bN

N−1
∑

h=1

bhk
h
1 Iξ

h)
0 +

N
∑

s=0

φ
s)
1 (u)Ds, (A.12)

=
1

bN

(

N−1
∑

h=0

bhk
h
1 Iξ

h)
0

)

+
N
∑

s=0

φ
s)
1 (u)Ds,

with

Ds =











































1
bN

∑N−1
h=1 bhf

h−1)(0)− λ+δ
bNλ

, s = 0

c1bs−1k
s−1
1

bNλ
− (λ+δ)bsks1

bNλ
+

ks1
bN

∑N−1
h=s+1 bhf

h−1−s)(0), s = 1, ..., N − 1

c1bN−1k
N−1
1

bNλ
, s = N.

Finally, substituting (A.12) in (A.11), (3.1) is obtained. For u > b, we can obtain φ
(N+1)
2 (u)

by an analogous process substituting c1, k1 and φ1 (u) by c2, k2 and φ2 (u).
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